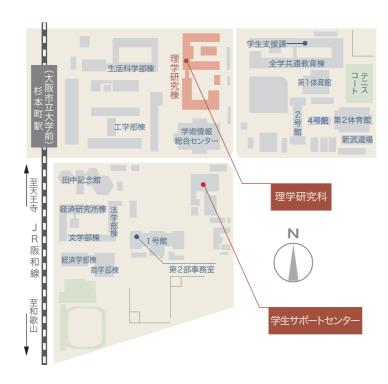

ent of Chemistry,

アクセス情報

二 新大阪から


約1時間

地下鉄御堂筋線「あびこ駅」下車、 4号出口より南西へ徒歩約20分

🔛 関西国際空港から

JR関空快速(堺市駅で各駅に乗換)→ JR「杉本町(大阪市立大学前)駅」下車、東へ徒歩約5分

杉本キャンパス案内図

06-6605-の後に次の番号を回して下さい。*は2012年度専攻主任

手木(2559) 豊田(2555) 吉野(3070) 宮原(3130) 佐藤(3072) 八ッ橋(2554)* 塩見(3149) 松下(2556)

2) 有機化学

臼杵(2563)

大船(2570) 品田(3193) 坂口(2571) 飯尾(2562)

岡田(2568) 小嵜(2565) 鈴木(3075)

森本(3141) 舘 (3191)

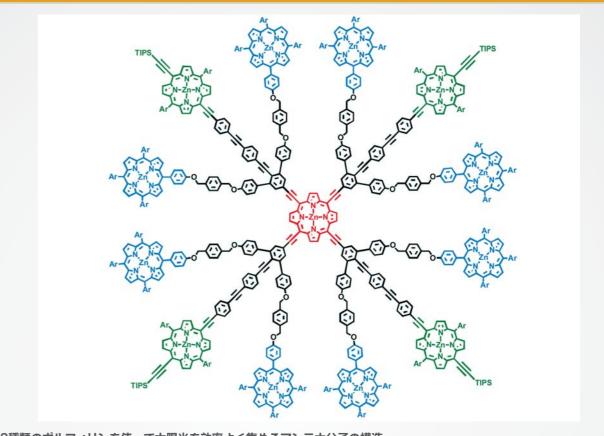
3)無機化学 木下(2519)

西岡(2569) 廣津(2546) 中沢(2547) 築部(2560) 板崎(3123) 篠田(3139)

杉本キャンパス

大阪市住吉区杉本3-3-138

JR「杉本町(大阪市立大学前)駅」下車、東へ徒歩約5分 または 地下鉄御堂筋線「あびこ駅」下車、4号出口より南西へ徒歩約20分


物質分子系専攻へのアクセスポイント: http://www.sci.osaka-cu.ac.jp

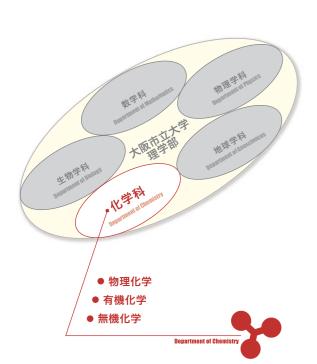
大阪市立大学

理学部 理学研究科

未来を拓く

化学科/物質分子系専攻

3種類のポルフィリンを使って太陽光を効率よく集めるアンテナ分子の構造


J. Am. Chem. Soc. 2011, 133, 13276-13279.

Facility of Science, USAKA CITY UNIVERSITY

次世代を担う 新分子・物質創成の拠点

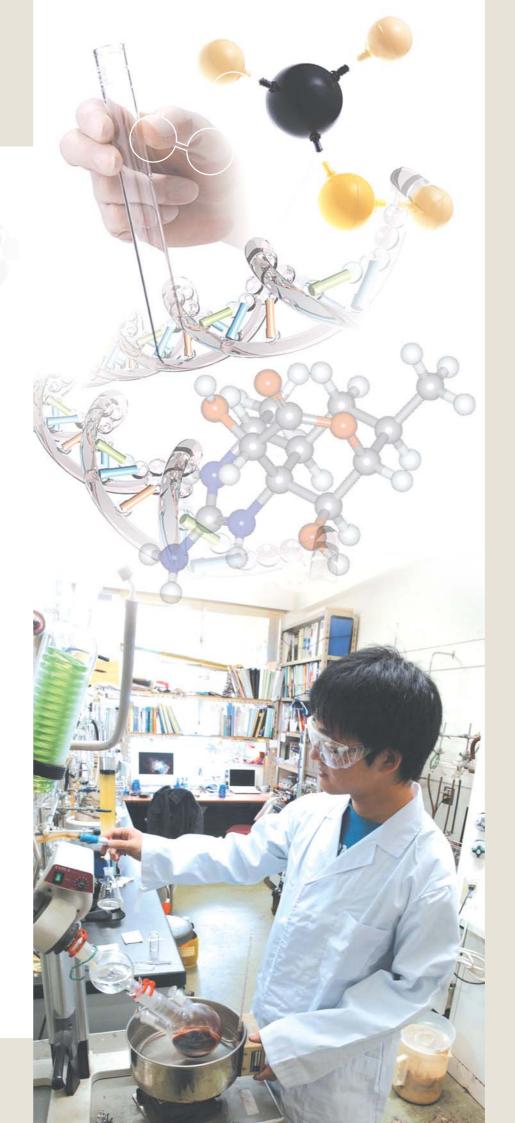
Department of Chemistry, Faculty of Science, Osaka City University

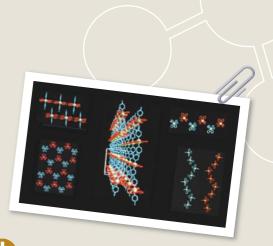
Department of Chemistry

電子・原子・分子が活躍する「ミクロの世界」 から未知の化学現象を解明する

▶▶▶物質の機能と変化に関する原理を追究し、人類の夢にかなう新物質を作る学問それが化学です。化学の研究対象は、自然界の化学現象だけではありません。 天然にはない新しい機能をもつ化学物質(分子)を設計したり、それを合成する研究が、多彩に、幅広く展開されています。生体内の化学反応や酵素の働きは無論のこと、生命にとって大切な化学現象のうち、解明できた現象はほんのわずか。

人間にとって重要で、おもしろい化学の研究テーマは、たくさんあります。化学を研究すれば、肉眼では絶対に見ることのできない極微の世界、電子・原子・分子が活躍しているミクロの世界と、いつも関ることができます。現在では「量子の法則」をもとに、未知の分子の構造と性質を理論的に予測することも可能になってきました。化学は今、いわばルネッサンス期にあり、次世代に向かって大きく変わりつつあります。





化学科 index

化学科への招待・・・・・・ P2
インデックス・・・・・・ P3
理念とアドミッションポリシー・・P4
化学科の講座/研究室と構成員・・P5
物理化学·····P6-7
量子機能物質学 分子物理化学 構造生物化学 光物理化学
有機化学·····P8-9
分子变换学 生体物質学 合成有機化学 物性有機化学
無機化学・・・・・・ P10-1
分子設計学 機能化学 錯体化学
入試情報·進路情報·····P12
大学院・・・・・・ P13
大学院入試情報·····P14
大学院進路状況·····P15

Department of Ghemistry, Faculty of Science

理念とアドミッションポリシー

高度に多様化した社会で活躍する 専門的知識を有した人材を 育成する

Department of Chemistry, Faculty of Science, Osaka City University

化学科の教育の特徴

少人数制で質の高い教育と恵まれた 研究環境で科学的センスを培う

▶▶▶ 大阪市立大学理学部化学科の少人数制の質の 高い教育と、最先端の研究は、広く学会や社会から高く 評価されています。また、各研究室の設備に加えて、

理念

Policy

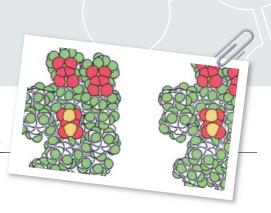
物質科学や生命科学など、先端学際領域にもつながる豊かな科学を追及する

▶▶▶ 物質の構造・反応・機能を化学の基本である原子・分子のレベルから理解し、広い範囲の自然科学の基礎に精通することを通して、物質科学や生命科学などとの先端学際領域にもつながる豊かな科学を追及する。そして、物質を中心に据えた科学的センスを養い、学修した成果を社会の様々な分野で活かすことの出来る人材を輩出する。

共同利用施設である分析室には、超伝導NMR装置、 質量分析装置、自動X線構造解析装置などが完備して います。化学を学び、その研究を志す学生にとって、 恵まれた教育環境にあります。

優秀な学生には、2年次において3年次の講義を履修できる特権や、3年次から大学院への飛級制度もあります。

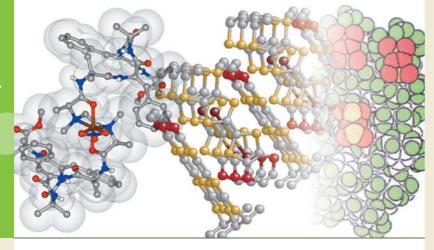
卒業生の7割強(平成22、23年度)が大学院へ進学し、より高度な学問を習得した人材として社会で活躍しています。最近の民間企業では、多様化した社会ニーズに対応できる人材として、化学の基礎を積んだ理学部出身の学生を広く求めています。特に、高度な学問と研究を積んだ大学院生の入学を歓迎しています。各企業の研究部門や製造部門の他、大学や国公立研究機関で数多くの卒業生が活躍しています。大学院の学生の就職状況はp.15に示します。


『Policy Policy Policy

化学科ではこんな人を求めています。

- ▶▶▶ 物質開発によって、社会に貢献したいという 情熱をもつ人
- ▶▶▶ 物質の機能や変化をもっと深く探求しようと いう情熱をもつ人
- ▶▶▶ 環境問題やエネルギー問題を解決したいという 情熱をもつ人
- ▶▶▶ 生命現象と物質の関わりをもっと良く理解しよう という情熱をもつ人

科 化学科の講座/研究室と構成員


化学科の学生定数は42名(前期25名、後期7名、推薦5名、その他理科選択)です。化学科教員数は現在29名です。マンツーマンに近い懇切丁寧な指導で、質の高い、高度な教育・研究を目指します。

()) ()	C近V1公约] 于75164 CV其V同	び代回反の教育		N 9 0	
講座	研究室	教授	准教授	講師	
	量子機能物質学	手木	寺岡、吉野		
物 理 化 学	分子物理化学	佐藤	塩見	豊田	DG 74
	構造生物化学	神谷	宮原		P6-7^
子	光物理化学 八ッ橋 松下 分子変換学 大船、品田 坂口				
有機化学	分子変換学	大船、品田	坂口		
	生体物質学	飯尾	臼杵		P2 01
	合成有機化学	森本		舘	P8-9^
	物性有機化学	岡田	小嵜	鈴木	
المراجعة	分子設計学	木下	西岡、廣津		
無機化学	機能化学	築部、篠田	土江、三宅		P10-11^
	錯体化学	中沢		板崎	

1

Physical Chemistry

最先端の計測技術や理論計測により 新しい分子科学や物質科学の領域 を切り開く物理化学

【量子機能物質学研究室

(光物理化学研究室

物理化学って こんなトコロ

スピン科学、分子分光学、物性

化学、理論化学、超短パルス

レーザー化学、X線構造生物

化学、磁気共鳴分光学などに

より分子や分子集合体の電子

状態、構造、反応、機能、物性を

解明します。

❤ 講座の研究内容

量子力学に基づく分子化学理論や最新の技術を用いた電子状態、構造、 反応、機能、物性の研究を通じて、ミクロな分子世界の解明と量子機能など を持つ物質の創成と機能解明を行っています。電子スピンの科学と励起 状態や基底状態の分子磁性、生体関連物質の振動分光学、有機の伝導体 などの輸送現象と新しい電子相の探索と解明、分子の電子状態理論・計算 科学、超短パルスレーザーを用いた光反応分子科学、放射光を利用して タンパク質・酵素などの結晶構造・分子機能を探る巨大分子生命科学、電子 磁気共鳴分光学で解明する分子の磁性・分子スピン量子コンピュータの 開発にわたる新しい学際領域を対象に幅広く研究を展開しています。これ らの研究と教育を通じて、これからの自然科学の優れた担い手となる 視野の広い人材を育成します。

手木芳男 教授 分子磁性と有機スピン系の光励起

分子磁性とその光による機能性発現と制 御を研究している。我々は、πラジカルの光 励起高スピン状態の実現に先駆けて成功 し、この種のπ電子物質に基づく光誘起磁 性等の複合機能や量子機能、分子素子へ の展開を目指して、研究を行っている。

状態及び分子素子の研究

佐藤和信 教授

分子物理化学·電子磁気共鳴分光 ・分子スピン量子コンピュータ

分子の結合形態を制御することによる新 しい分子機能の探索と、新しい機能評価・ 制御技術の確立を目指している。分子スピ ン量子コンピュータや量子情報通信の実現 を目指す新しい量子情報スピン科学の開 拓や二次電池の評価技術の開発を行って

【構造生物化学研究室】 神谷信夫 教授

光合成酸素発生複合体と酵素の 結晶相反応化学

光合成で酸素を発生している複合体の機 能の解明をめざし、SPring-8に代表され る高輝度放射光施設を利用した結晶構造 解析を行っている。また、結晶中で進行す る酵素の反応過程をその場で観察して、反 応機構を実証する研究を進めている。

光物理化学研究室

八ッ橋知幸 教授

高強度レーザーによる超多価イオン 生成と新規化学反応の開拓

レーザーが創り出す強い光により物質から 瞬時に多数の電子を引き剥がして超多価 状態を創り出し、方向性を持った高エネル ギーイオンや固体中での局所的な高密度 イオンを発生させ、有益な新規化学反応の 開拓を目指している。

寺岡淳二 准教授

牛体関連物質の構造と機能の関係を共鳴 ラマンスペクトルや振動光学活性などの手 法を用いて明らかにする。

生体関連物質の振動スペクトル

Daisuke

塩見大輔 准教授

結晶性有機固体の磁性・磁気共鳴

開設分子からなる分子集合体(結晶や溶 液中の会合体など)を開発し、それらの磁 気的性質を種々の物理化学的手法で明ら かにする。分子科学の新領域の開拓に向 けて、新奇な磁気機能をもつ磁性体や分 子演算システムの開発につなげる。

量子機能物質学研究室

吉野治一 准教授

結晶性固体の輸送現象(電気抵抗率、熱電能、 熱伝導度、磁気抵抗)と新電子相の探索・解明

有機伝導体などの低次元・強相関電子系 で発現する新奇電子相では、従来型の金 属や半導体には見られない特異な現象が 起きる。このような電子相と輸送現象を低 温・強磁場・高圧力下で探索し、その発現 機構を理論計算によって明らかにする。

酵素タンパク質の立体構造と機能 分子の電子状態の理論的研究

主にビタミンを補酵素に持つ酵素タンパク 質をターゲットとし、その3次元立体構造 を明らかにし、酵素が基質と結合し触媒反 応が起こる機構を解明する。

松下叔夫 准教授

分子、原子の世界を支配する基本法則を 調べ、分子やイオンの雷子状態を理論計

篁の手法に基づいて研究を行っている。化 学反応や分子の機能など、特に励起状態 が関与する現象を第一原理からの解明す ることを目指して研究を行っている。

豊田和男 講師

磁性分子の電子状態、及び分子 分光に関する量子化学理論

量子力学に基づく計算によって分子中の電 子の状態を求め、主として磁性や光に関す る分子の性質を研究している。現実の化学 の問題に役立つ方法論の確立を目指し、 新しい理論的手法の提案やコンピュー タープログラム開発を行っている。

Organic Chemistry

有機分子に秘められた潜在的な有 用性や可能性を引き出す基礎研究 研究成果を社会に役立てるための 研究を行う

物性有機化学研究室

有機化学って こんなトコロ

プラスチック、医農薬、化粧品、機能 性材料など、私達の生活を支える有 機分子は膨大な数にのぼります。有 機合成化学のたゆまぬ進歩、天然あ るいは人工合成化合物から次々に見 出される有機分子の新機能に対する 興味、そしてそれらの機能を生活の 質の向上に役立てようとするモチベ ーションが数多くの有機分子を生み

出す原動力となっています。

☞ 講座の研究内容

1) 有機化合物を自在に合成する方法の開発、

有機化学講座では、無限ともいえる構造の多様性を備えた有機分子の新 合成法の開発や、新機能を探る最先端研究を行っています。研究内容は、

- 2) 未知の有機分子を創製し、その新しい物性機能を探る研究、
- 3) 自然界から見出された有機分子の生物機能解明に向けた研究、 にまとめることができます。これらの一つ一つを深く追求する研究や、複 合的に組み合わせることによって新しい現象や機能を探る研究を進め、 21世紀の有機化学の優れた担い手となる人材の育成を目指しています。 詳しい内容はHPで紹介しています。

(分子変換学研究室)

大船泰史 教授

生体機能制御分子の設計と合成 方法論

生体情報伝達にかかわる制御物質の設計 と開発やそれらの目的を達成するための新 しい分子変換法の開発に取り組んでいる。 前者では、これまでに生体内アミノ酸の数 百倍も神経細胞を興奮させるアミノ酸類を 開発した実績があり、これらを出発点とし て、天然由来の神経毒や脳保護作用をもつ アミノ酸・アルカロイド類の全合成に挑戦 している。

分子変換学研究室

品田哲郎 教授

生物活性天然有機分子の合成と

複雑な情報伝達によって調節されている 生命機能。その什組みを分子構造レベル で理解することが生命科学研究の重要な 課題となっている。有機分子合成化学を軸 として、分子構造の観点から生命現象を理 解する研究を展開している。

生体物質学研究室

飯尾英夫 教授

生体物質の有機化学的研究

原生動物繊毛虫の生命現象に着目し、特 に、繊毛虫ブレファリズマの有性生殖過程 の初期段階である細胞間の接合現象と、 繊毛虫間の捕食と非捕食に関わる細胞間 の攻撃と防御の分子機構を明らかにする ことをめざしている。

物性有機化学研究室

π電子共役系を基盤とする機能性 物質開発

新しいπ電子構造をもつ化合物は新しい 性質を示すだろうという考えに基づいて 研究を行っている。ラジカル、ラジカルイ オン、時には金属イオンを含めて、特異な 物性の発現(磁性、伝導性、や発光特性) を目指して検討を行っている。

合成有機化学·天然物有機化学

生命現象の担い手である構造学的、生物 学的におもしろい二次代謝産物(天然有機 化合物)の全合成を研究の中心に据えなが ら物質合成のレベル向上に貢献し、分子サ イドの視点から生命現象の本質を理解し たいと考えている。

分子変換学研究室

坂口和彦 准教授

ケイ素の特性を利用した合成反 応の開発と合成

生物活性物質の合成を目的として、特にケ イ素の特性を利用した新規かつ有用な有 機合成反応の開発を行っている。ケイ素を 組み込んだ生物活性分子アナログの設 計・合成も視野に入れ研究を進めている。

小嵜正敏 准教授

高機能精密巨大分子の創出

精密巨大分子を創出し、分子構造を利用 してナノ空間に多数の機能性部位を精密 配列することに取り組んでいる。機能性部 位の間の相互作用を精密制御することで 協同効果、相乗効果を生み出し、個々の 機能性部位単独では達成困難な高度な 機能の発現を目指している。

生体物質学研究室)

臼杵克之助 准教授

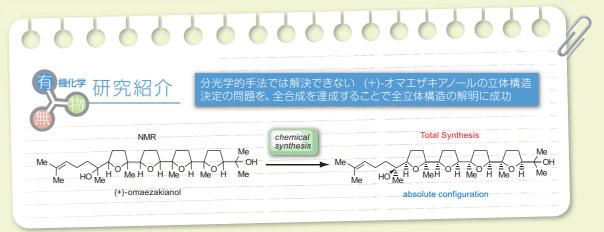
生物有機化学: 生理活性物質の 構造決定・合成・機能解析

牛体機能の発現メカニズムを有機化学的 な手法で探究し、生命現象を担っている物 質と生体の関わりを分子レベルで明らか にするために、構造解析・全合成・生物活 性評価・構造活性相関などのアプローチ から研究を展開している。

舘 祥光 講師

生体の機能解明と分子構造の精密 制御による機能分子の創成、開発

有機分子の構造を精密に制御することに より、バイオインスパイアード触媒、発光性 配位高分子、および薬理活性等の機能開 発に関する研究を展開している。応用に向 け、これらの機能を凌駕する分子の探索を 日指して研究を進めている。



物性有機化学研究室 給木修一 購前

スピン制御を目指した機能性π

共役電子系の開発

分子の特徴である設計性と多様性を活か した特異な物性を有する機能性π共役雷 子系の設計・開発を行っている。特に雷荷 とスピンを分子内または分子間で制御す るスピン制御分子システムの構築を目指し て研究を進めている。

Inorganic Chemistry

金属元素を駆使した 新たな化学の創製

分子設計学研究室

機能化学研究室

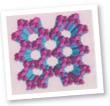
無機化学って こんなトコロ

金属元素がもつ能力を最大限に

引き出すために物質の本質を

理解し、新たな機能の発現を

目指しています。



☞ 講座の研究内容

分子無機化学は、従来の無機化学の枠を越えて、金属元素が関わる様々 な現象を分子レベルで解明し、新たな物性や機能の創出を目指して います。種々の金属元素が関与する分子変換、

エネルギー変換、認識機能に注目し、触媒反応、 生体反応、超分子集積体に関する最新の研究 を展開しています。そして、新しいサイエンス を担う広い視野をもった無機化学の人材を 養成すべく教育研究に力を注いでいます。

<u>Message</u>

分子設計学研究室

木下 勇 教授

機能性錯体の合成

グリーンケミストリーを目指し、資源と環 境に配慮するために、第一遷移金属の機 能を見直すことにより、従来貴金属、稀金 属でしかなし得なかった反応を開発する。

特に鉄、銅、ニッケルを中心として研究する。

機能化学研究室 築部 浩 教授

ſsukube

分子から超分子へ、超分子から 分子システムへ

分子認識を基盤とする超分子システムの開 発を主要テーマとして、新しい分子や錯体 の合成や集積化、天然タンパクへの新規機 能の発現、ナノセンシング系の構築などを 行っている。

錯体化学研究室

中沢 浩 教授

遷移金属錯体の創製と新機能発現

遷移金属と典型元素間に多様な結合様式 をもつ錯体を創製し、その結合の本質を 構造および反応性の面から検討する。特に 今までにない新しい機構で進行する触媒 反応の開発、ならびに錯体がもつ物性機能 の発現を目指して研究を行っている。

機能化学研究室

金属錯体を基盤とする分子認識 系の開発

希土類イオンの配位化学や発光性を活用 し、分子認識機能や発光応答性をもつ希 土類錯体の開発および応用研究への展開 を図っている。また、金属錯体の立体構造 や自己集積能を利用した特色ある分子認 識空間の創造と利用に関して研究を行っ ている。

Denartment of Chemistry,

機能化学研究室

土江秀和 准教授

自然界には様々な両親媒性物質が存在し、 それらは表面に吸着したり凝集体を形成 したりして、重要な働きをしている。また人

会合コロイド水溶液の性質と機能

類は、界面活性を有する物質を合成し、

様々に利用してきた。両親媒性物質の諸性

質を多角的に研究している。

機能化学研究室 Miyake

三宅弘之 准教授

時空間制御型金属錯体の創成

必要な時に必要な機能を発現させるため には、空間を含めた分子構造の制御と、適 切なタイムスケールでの構造変換が必要 である。金属錯体の配位特性を活用した、 動的分子の創成と機能発現について研究 を行っている。

分子設計学研究室 Nishioka

西岡孝訓 准教授

新規機能性金属錯体の開発

金属錯体は、有機合成触媒や抗ガン剤な どの医薬品に用いることができる。これに 糖などの機能性部位を導入することによ り、新たな機能を持つ触媒やより効果的で 副作用の少ない医薬品の開発の基礎とな る研究を行っている。

分子設計学研究室

廣津昌和 准教授

多核金属錯体の精密構造制御と 機能発現

分子内に2つ以上の金属イオンを含む多 核金属錯体を精密に分子設計・合成し、そ の機能を解明する研究を行なっている。多 核錯体に見られる特異な結合様式や反応 性を理解し、金属上での結合活性化、さら には触媒反応への展開を図る。

錯体化学研究室

板崎真澄 講師

遷移金属錯体を用いた新しい分子 変換反応の開発

遷移金属錯体による分子変換反応の開発 を目指して研究を行っている。特に、地球 上に豊富に存在する鉄を金属中心とする 錯体を用いて、その特長を活用した有機合 成反応を見出し、触媒機構の全貌を明ら かにすることに重点を置いている。

••• 11

募集人員:3名

試 験 日:平成24年7月6日(金)

近年、短期大学や高等専門学校に在学する人たちの中で、卒業後も継続して勉学をしたい人や、大学入学後、現在とは別の専門分野に進みたいと考えている人が増えています。また、すでに4年制大学を卒業した人たちの中にも、最近の学問の発展をかんがみて、改めて専門的な勉学をしたいという人も多くなっています。このように、さまざまなかたちで勉学意欲を持つ人達に、その機会と場を提供するため化学科では3年次への編入学試験を実施します。

推薦入試

募集人員:5名(1名)[2名];5名の内、()の人員数は大阪市立の高校枠、[]内の人員数は全国枠です。 試験 日:平成24年11月中旬

豊かな創造性で社会に貢献できる人材を発掘するため、化学の勉学に特に熱意を持つ学生を募集します。 在学する高等学校等の学校長の推薦を受けたものに対して、大学入試センター試験を免除し調査書等の 書類選考及び口述試験や小論文選考により入学者を選抜します。

前期入試

募集人員:25名

試 験 日:平成25年2月25日(月)

前期入試ではセンター試験(国、地歴公民、数、理、外、計 400 点満点)と 2 次試験(数、理、外、計 500 点満点)の成績の総和として合否が決定されます。

後期入試

募集人員:7名

試 験 日:平成25年3月12日(火)

後期入試ではセンター入試(数、理、外、計700点満点)と2次試験(化学口述、300点満点)の総和として合否が決定されます。

※詳しくは募集要項をご覧ください。

化学科卒業生の進路

卒業生の7~8割程度が本学大学院に進学しています。 他大学大学院への進学者のほか、平成23年度卒業生は、食品・容器 メーカーなどの製造業や金融・保険業等に就職しました。

物質科学と化学の分野を統合し、ボーダレス化時代に対応します。

▶▶▶ 現在、先端の学問領域はボーダレス化の時代にあり、新たな領域が勃興しつつあります。物質科学と化学についても内容の高度化と境界領域の著しい発展にはめざましいものがあります。このような急激な質的変化に対応するため、従来の物質科学と化学の分野を統合した分野が、物質分子系専攻です。本専攻は2つの新しい教育・研究分野からなり、開放的かつ国際的な雰囲気の中で約30名の教員がマンツーマンの指導をおこなっています。

本専攻は、一般社団法人 日本化学工業協会が化学産業の国際競争力や技術力の向上に資する優れた取り組みを支援する目的で創設した「化学人材育成プログラム」の第2回支援対象に、採択されています。これからの化学産業を担う人材の育成に取り組んでいます。

大阪市立大学大学院 理学研究科

■ 前期博士課程

■ 後期博士課程

Graduate School of Science, Osaka City University

7機化学

無機化学

ブ学院

12

大学院入試情報

物質分子系専攻では、化学についての十分な素養を持ち、新たな分野を切り開くことを目指す学生を募集しています。中でも、後期博士課程の学生に対しては、高度な学力を有し、自ら新たな問題を発掘、解決する意欲ある学生を募集しています。

入試概要

2013年度(平成25年度)入試情報 (募集定員、出願期間、試験日、試験科目)

_		募集定員	出願	試験日	試験科目
前期博士課程	推薦入学 特別選抜	若干名	2012年6月6日(水) ~8日(金)	2012年7月6日(金)	口述試験
	一般選抜	34名	2012年7月下旬	2012年9月上旬	英語 専門科目 (化学又は化学と物理) 口述試験
	外国人留学生 特別選抜	若干名	同上	同上	英語 専門科目 (同上) 口述試験
	社会人特別選抜*	若干名	2013年1月上旬	2013年2月上旬	英語 専門科目(同上) 口述試験
後期博士課程	一般選抜	13名	2013年1月上旬	2013年2月上旬	口述試験
	外国人留学生 特別選抜	若干名	同上	同上	口述試験
	社会人特別選抜	若干名	同上	同上	口述試験

※その他出願資格、出願書類、出願方法等の詳細は「平成25年度大学院理学研究科博士課程学生募集要項」をご覧ください。

【募集要項・出願書類の請求方法(郵送希望者)】

- (1)下記、大学院入試担当に請求する
- (2)封筒の表に「赤色」で「大学院理学研究科前期(または後期)博士課程学生募集要項請求」 (推薦入学特別選抜の場合は「大学院理学研究科前期博士課程推薦入学募集要項請求」)と記入
- (3)390円(推薦入学特別選抜の場合は240円)の切手を貼り、受取人の郵便番号・住所・氏名を明記した返信用封筒 (角型2号:24.0cm×33.2cm)を同封

【請 求 先】

〒558-8585 大阪市住吉区杉本3丁目3番138号

大阪市立大学学生支援課

入試担当(TEL:06-6605-2141, FAX:06-6605-2133)

専攻・分野・受験希望の枠・受験科目・過去の入試問題などのお問い合わせについては・・・ 学生サポートセンター(理学部教務担当)(TEL:06-6605-2504, FAX:06-6605-3649)または、 専攻主任 八ッ橋知幸まで(TEL:06-6605-2554, tomo@sci.osaka-cu.ac.jp)

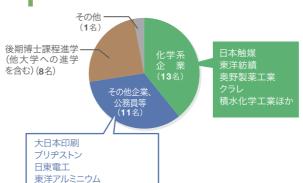
詳しくは、http://www.sci.osaka-cu.ac.jpの入試情報をご覧ください。各研究室へもアクセスできます。

Graduate School of Science, Osaka City University

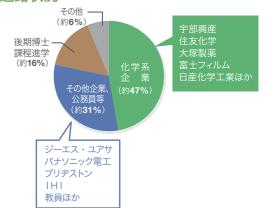
進路状況

(前期博士課程修了者)

前期博士 課程 修了者 約15-30% ►►► 後期博士課程に進学 約15-30% ►►► 非化学系企業に就職


奨学金採択率(平成23年度)

日本学生支援機構:


前期博士課程および後期博士課程の申請者ほぼ全員

平成23年度 前期博士課程修了者(33名) 進路状況

地方公務員ほか

過去3年間 前期博士課程修了者(97名) 進路状況

Graduate School of Science, Osaka City University

14